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The problem is solved of defining in the phase space a set of initial states from
which a linear stationary system can be brought to the origin, The case is con-
sidered when the magnitude, linear momentum, and energy of the control are
simultaneously constrained, as well as the case when its linear momentum and
energy are simultaneously constrained,

1, Statement of the problem, We consider a controllable system described
by a linear matrix differential equation with real constant coefficients

dz/dt = Az + Bu 1.1)
Here 2 = [z [, 4 = ayll, B = by,ll, u=| u,| are mamices of order

(X 1), (n X n), (nX71), (r X 1), respectively, By b, we denote the sth
column of mawix B (bs 5= 0 for alt s = 1, ..., r). As admissible contols we take

measurable functions &, (£) (s = 1, ..., 7), satisfying simultaneously the three inequal-
ities
]u,(t)|<st (Mg = const >0) (1.2)
[ lug(mldr<< N, ¥y=const>0) (1.3)
0
‘S‘usz (vydr< P, (P, = const >0) (1.4)

0

From the physical point of view conditions (1.2), (1.3) and (1,4) specify the bounded-
ness of the magnitude, the linear momentum and the energy of the control, respectively,
The general solution of system (1,1) has the form

t
~

z (t) = eAlzy + | e4C¢-9Bu (1) dv (1.5)
0
where Z, is the initial state vector,

We pose the problem of defining in the phase space X a set () (the region of control-
lability) of states Zp for each of which there exists an admissible control bringing the
system to the origin, The problem of determining the controllability region () is con-
sidered also for the case when the admissible conwrols are functions satisfying simultan-
eously only the two integral constraints (1, 3), (1.4).

In [1-3] the problem we have posed was solved withr r = 1 for the cases when controls
satisfying conditions (1, 2) or (1, 3), (1.4) were admissible, The problem was solved
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in [4, 5] for the case when constraints (1, 2) and (1, 3) were imposed simultaneously on
the control, and in [6] for the case when constraints (1,2) and (1, 4) were imposed,

Let us assume that under a certain admissible control the equality z (¢) = 0 holds
for { = 1 then from (1 5) we have

—zo—j.e—A‘Bu(r)dt —2 jrmb,u (1) dv (1.6)
s==10
The admissible control under which equality (1, 6) is realized, satisfies the conditions
T
[1u,m) v N, (1.7)
0
T
j u,?(1)dr< P, (1.8)

The set of controls #, (£) simultaneously satisfying inequalities (1. 2), (1, 7) and (1, 8) is
denoted Q! (T),while the one for which the controls satisfy simultaneously the inequal-
ities (1, 7) and (1. 8) is denoted Q2 (7). The set of vector-valued functions u (t) such
that u, (t) € Q5 (T) (m = 1, 2),is denoted Q™(T). The desired controllability
regions are denoted Q" and @, respectively, The problem posed can be restated as
follows: determine the set ()™ of vectors 2, for each of which there exists I' such that
equality (1.6) can be ensured by means of a function u (f) & Q™ (') (m =1, 2),

2, Regions of attainability, We introduce the notanon

v, (T) = f cAbu,()dr, ()= v,(T) = Se'A‘Bu (mydr  (2.1)

s=1

and in the space X we consider the attainability regions

QT (T) = {0, (T): u, (t) < O (T)}
Q™(T) =2 OM(T)={w (T ut)e Q™))
(251

The attainability regions @ (T) (s = 1, ..., r; m = 1, 2) and Q™ (T) possess the
following properties: 1, Closedness, 2, Convexlty. 3. QF (T, "grows" with the in-
crease of 7', i.e., Qi (T)) C Qs (Ty) if T, << T,. 4. Symmetry about the origin,

By using the weak compactiéss in itself of a sphere in the space L,[0, T] [7], we can
prove the weak compactness in themseives of the sets Q7'(T) (m = 1,2). Property 1 foll-
ows from the fact that the set Q7' (7)is a linear mapping of the set QF' (T), Properties
2, 3, 4 follow easxly from TZ 6. 8, 9].

The relations Q3 () < Q2 (T),Q! = Q%ind Q'  Q®hold because QYT
Qi ( T) . From the definition of the set @,™ (T) it follows that the system

dz/dt = Az -+ b,u, (2.2)

can be brought to the origin in time T if and only if its initial state T & Q7 \T).In
view of Property 3 the controllablhty region Q7 of system (2, 2) is a set of points of
space X, which includes Q5 (T) as 7 — oo. The controllabihty region Q™ of system
(1.1) is obtained as the algebraic sum of the regions Q" (s = 1, ..., 7):
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Q" =2 Q7

e}

therefore, we shall first consider the problem
of constructing the controllability region Q7'
of system (2, 2),
4?(77 We take an arbitrary unit{1 X n)evector q
%{(7) and we construct the support hyperplanes of set
4" @,™ (T), orthogonal to vector 1, From Prop-
erties 2 and 4 it follows that there are two such
7 planes and they are symmetric to each other
relative to the origin (Fig, 1), The distance
dq (T) from the origin to these planes is given

Fig, 1.
by the expression [10]

T
de(T)= max (ws(T)) =  max jne‘A‘b,u,(r)dt
r(DEQHD u (MEakT) o

From Properties 1 and 2 it follows that to the set Q5 (') belong those and only those
points z whose coordinates satisfy the inequality

Inz | < da (T)
for all possible unit vectors 1.

3, Determination of distance dy(Z1') for the control class Q;(T).
We solve the problem of maximizing the functional

T
1w = [ ne4du, (v)dr (3.1)

with the controks u, (t) & Q} (T). If ne"4'b, = const, then for sufficiently large values
of T the maximizing function both in the class Q; (T) as well as in the class Q5 (T)

is, obviously, the function u,(¢) = N,T-! sgn (ne"4'd,) which turns, of the three re-
lations (1.2), (1.7), (1.8). only the relation (1, 7) into an equality, Further, we take

it that ne-4!h, =& const.

Let ¥ (#) be the control solving the problem of maximizing integral (3, 1) under the
constraints (1.2) and (1, 7), It follows from [4] that when T 2 N,/M, the control u, (?)
equals M, on some set of measure N,/M, and equals zero on the complement of this set
with respect to the whole segment [0, T}.f’ll“he integral

f u bty dv

]
after this control has been substituted in it, yields for T 2> N,/M, an expression for
MoNs. 1f M,N, < Py, then the control u,(f) &€ Qﬁ (T).Consequently, under the condition
M N, < P; the problem of maximizing integral (3,1) in the control class Q4(7) is redu-
ced to the maximizing problem in the presence of only the two conditions (1,2) and (1. 7)
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which was examined in [4],
In what follows we assume that

MN,> P, (3.2)

Now let us(t) be the control maximizing functional (3,1) under constraints (1, 2), (1. 8).
Two cases are possible: the control u,(t) does not satisfy inequality (1, 7) (Case A4), the
control u,(t) satisfies inequality (1,7) (Case B). We first consider Case 4. In order to
solve the problem of maximizing integral (3,1) we consider the auxiliary functional

T

K3

Io(u, % 0)= ‘) [ne“‘“bsu, (T) —%lus(v)] — -3— ug (r)] dr (3.3)

0

Here % >0,0 >> 0 are constant Lagrange multipliers, In order to maximize integral
(3. 3) under condition (1,2) we need to find a function |u,(t)| << M, which maximizes
the integrand, Obviously, such a function has the form

M, sgn (neAb,), teE (T, ¥, o)
Uy (2, %, ) = {672 [| ne-4tb, | — %] sgn (me™4'by), teF (T,%,0) (3.4
0, teG (T, %)
E (T,%0)={te |0, T]: |04, | > o+ oM}
Fo (T, g,0)={te (0, T]: %< |ne4'd, | <X + M} (3.5)

G(T,x)={t [0, T]:|ne4b,| <}
(Ee(T, % 0)+ Fo(T, %, 0)+ G:(T,%)=10,TY)

We substitute function (3, 4) into relations (1, 7) and(1, 8)and we show that in Case 4
there exist values of % > 0 and 6 > 0 for which these relations turn into equalities,

.

After the substitution we obtain the following equations in the variables X, O:

@000 = MyE (T, %9+ + | linesb,|—gldv=N, (36)
Fo (T, x,9)

Oy (4 0) = MWE, (T, 0,0+ 5 | [nesh,|—xdv=P, 37)
F‘ (T, X, 0)

where WE(T, ¥, 0) is the Lebesgue measure [11] of the set E, (T, ¥, 0).

The functions ®, (¥, 0) and @, (%, o, are continuous, We consider these functions
only in the first quadrant (y >V, 62 0) of the ( y, o )-plane, As y— 0 and 60— 0
we have @y (X; 0) = M7, @, (%,0) — My*T. The inequalities M,T > Ny and M3T>

> P, hold for values of T larger than a' certain value, For each fixed value of o the
functions @, (y, o) and @, (%, ) decrease strictly monotonically as X varies from zero
to the value

[ —Al b
x ; EH;:XT] (ne 5) (3.8)

When % = %', obviously, @, (%,06) = @, (¥, 6) = 0, For each fixed value of ¥ < %'
the functions &, (%.0) and (b& (%.0) decrease moriotonically as ¢ increases,
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As 0 — oo we have @y (3, 0} — 0.

From all that we have said above it follows that Eqs, (3,8) and (3, 7) define, in the
first quadrant of the { X.0 )~plane, curves whose endpoints He on the axes %= 0and
A6 o == 0, Each of these curves is continuous, has

P only one branch, and does not intersect itself,
Each of these curves is monotonic, i.e., if two
points (x®, o) and (x®, o) on the curve
are such that X >9W, then o « oW Let us
ascertain the relative locations of the points of
intersection of curves (3,6) and (3.7) with the
axes = 0 and ¢ = (), Let the points of inter-
section of curve (3, &) with the axes ¢ = U
and % = U have the coordinates (4, 0) and
_ {0, &'} respectively, while the points of inter~
Z section of curve {3,7) have the coordinates

(x® 0) and (0, 0*N. In other words,

(b: {Xu}f 8} = NS! Q}.{év 3(3}} = jvﬁ
O, (4P, 0) = Ps, O (0, o = Ps

As follows from [4], the control u, (¢, ¥V, 0) solves the problem of maximizing
integral (3, 1) under constraints (1,2) and (1, 7); consequently, ®, (x4, 0) == M,N,.
In accordance with condition {3,2), @, (, 0) > P,. From the monotonicity of the
fanction @, (¥, 0) it follows that ¥ < . As follows from [6, 12], the control
uy {t, 0, 0®) solves the problem of maximizing integral (3,1) under constraints (1, 2)
and (1,8). In Case A this control does not satisfy condition (1.7), i.e, ®, (0,0®) >
> Ns. From the monotonicity of the function @, (0,0) it follows that o'/ 2> ¢**. Hence
we conclude (Fig, 2) that a point of intersection (X", 9°) of curves (3,6) and (3. T)
exists in the first quadrant, Consequently, the system of Eqs, (3.6) and (3,7) has the
sotution %° > 0. ¢° > 0.

It is easy to show (for example, in the same way as in [12]) that the control 2, %",

0°) maximizes integral (3,1) under conditions (1,2), (1,7), (1.8). Thus, ‘the maxi~
mizing control has been found in Case 4 ; for the distance dy (T) we obtain the ex-

pression
&M=M, § |nesviat s (Iness,(ness, — oy ar (39

E, (T, 6% Fy(T.%°, 6%

The following relations result from expressions (3, 5) and (3,8)
(T) > MUE(T, % o)+ §— {ine27b, | — °Tdr = o°N, (3.10)

F AT, x*, 0%

From expressions (3, 53 and (3,7) we obtain
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do(T)> MPE (T, X% )+ % | [nedd,| — 1P dr = &°P, (3.4

F (T, %%, ¢

The inequalities
max (5’ Ny, °P,) < do (T)<<H'N, (3.12)

follow from relations (3,10), (3.11), and also from the expressions (1, 7), (3,1) and
(3.8). The first inequality in (3,12) holds, obviously, for both the control Classes
QT (m=1, 2).

Note that expression (3, 4) makes it possible to predetermine the structure of the con-
ol, constrained by conditions (1.2), (1.3), (1.4), bringing system (1.1) to the origin
in the shortest possible time,

Now let Case B obtain, The maximizing control is determined by the expression
u, (t, 0, 0@). The distance dn(7T) is obtained [6] from formula (3, 9) if in it we
sety’ = 0, ¢° = 0@,

4, Structure of the controllability regions Q; and Q' , Letthe
Toots Ax == &p -+ 1O, with multiplicities Pk of the characteristic equation

det||A — AE|| =0 (4.1)
have positive real parts fork = 4, ...y Iy z rorealpartsfor k =r, + 1, ..., 7y
and negative real parts for k = ry 4+ 1, ..., T3 , As follows, for example, from

[13, 14], the matrix e~4! has the form
r Pl

A= B g ¥

]
where a; are constant matrices with the elements a},’} . The expression for Ne” At b,

has the form
Ts pk—l ‘

-
neAb=3 N naube © 1t (4:2)

k=1 =0

Consider the system of linear algebraic equations (in the components of vector 1)
Nag; b, =0 (t=1,.... pr—1 for k=r;41,.., rs)

(=01..., pr—1 for k=ry+ 1., 13)
This system cousists of : 48
Ts
ﬁ.__- 2 px_(rz_rx)

k==p4+1

equations. To Egs, (4, 3) we add on the norming condition

2 =1 (4.4)

i=]1
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The vectors 7 which are the solutions of Eqs, (4, 3), (4.4) (we denote them n:), and
only they, when substituted in (4, 2) annihilate all the terms containing e (f =
=1y + 1, ..., ry), where g < 0, and the terms not containing exponents but con-
taining ¢/, where £ > 1. Thus the function | Ms e~4! 6,] remains bounded as ¢ —
—> co.Consequently, as I' — oo the quantity X' in(3,8) tends to a finite limit,
Since dy (1) is a nondecreasing function of 7', it follows from the right-hand inequality

in (3.12) that d, (1) tends o a finite limit as T — %0 which we denote d., (d,, =
= d_.)- If , is a vector such that dn, == 0, then the set Q,! is included, between
the planes

an®ae 2
ls-l: = 4,0 _‘T]s-z = (tﬂ

4 . VA

" . (4.5)
For those vectors q: for which dy, (I') < d., for any finite T, the set Q} (I) reach-
es the planes (4,5) only as T —> oo and the coordinates of the points z &= Qj satisfy
the strict inequality

Ingzi|<d, (4.6)

3

If ms is, for example, a vector such that 1), e—-\t b, = const == 0, then, there exists
a value T' for which dﬂ; (T) = d,2(T") = d,’ for all 7 > T'.For such a vector n;
the set ; (T') reaches planes (4,5) at T = 7“ and,, for all subsequent increases of

T, does not "expand” any more in the direction of 1.. Consequently, for this vector

n: on the planes (4, 5) there exist points belonging to set (Q*.From what has been said
we conclude that there exist vectors 1) such that the coordinates of the points of set

Q! satisfy the inequality

[Nzl <de (% T)

For those and only those vectors n: satisfying the system of »n algebraic equations

Ny by =0 =1, .,y [=0,1,..,p —1 (4.8)

it is obvious that m e 4'h =0 and d,,; (T) = d,‘; = 0. System (4, 3) is a special
case of system (4, 8). Let Ps be the rank of system (4, 8), then the fundamental system
of solutions of Eqs, (4, 8) consists of n — Qs vectors, Let us normalize each of these
vectors and denote them 13, ..., 1. "%, Then the set (; belongs to the planes

1z =0 @=1...,n—0) (4.9)

i.e., the dimension of set Q} equals p,. Note that the dimension of set 0§ equals
[1, 15] the rank of the matrix Wy = || by, Abs, ..., A" s ||; when ps = = system (2,2)
is completely controilable in Kalman's sense,
Now let 1 = n,°. We prove that here d, (T)— oo as T'— oo. Let us assume at

first that Case 4 holds for all values of 7' larger than some value, Then, the distance

d, (7T) satisfies inequality (3,12), We show that the quantity max (¥°, v°), being a
function of variable 7, does not remain bounded as T — oc. Let us assume the contrary,
i.e,, let us admit the presence of a constant ¢ > 0 such that max (7°, ¢°) < ¢ for all
values of 7. The left-hand side of equality (3,6) can be bound as follows:

Oy (%) ) S MBE, (T, c. ) (4.10)
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From expression (4, 2) follows the relation
[nem4 o | =R e ) + fa ()]

where «~*¥’'t" i the term having, as t — oo the maximal order of growth in comparison
with the other terms of form ¢~*54/ occurring in expression (4.2); f, (¢) 2= 0 is an almost
periodic function, being the sum ot a finite number of sinusoids and a constant; /2 (£) —
— U as t— ov From the condition n=£ 1, it follows that — ¢, = U and at least one of

the inequalities is fulfilled: — &, > U, ¢ > U. Consequently, if 3 == 1, ¢ *F"'#!" — oo
as t— oo, As follows from [16], the relanon
lim T§|fl(r)|azr_1<>o (4.11)

holds for the almost periodic function | f,(#) | .Using relation (4,11) it is not difficult to
show that p&; (7, ¢, ¢)— ocas T —»oo. From inequality (4,10) we conclude that the left-
hand side of relation (3, 8) is an unbounded function as 7 — . Therefore, from the
assumption that max (y°, ¢°) < it follows that equality (3, 6) carnot hold for sufficiently
large values of /', but this contradicts what was presented above, Since the distance
d.(T) is a monotonically increasing function of 7, then from inequality (3,12) it foll-
ows that in Case A.d, (1) — co as T =+ oc. If Case B holds for all values of 7' larger
than some value, then, in accordance with [6], ¢, (7) ~ co as I' — oo. Let us assume
that the intervals of values of 7' in which Cases 4 and 5 hold, alternate, Since the
distance o, (1) is a nondecreasing function of 7, we can conclude again that ¢, (1) =
= as I' — oo. Thus, the set (! is bounded only in the directions of n = Yls

The Egs. (4. 3), (4.8), (4. 9) and the inequalities (4, 6), (4.7) obtained allow us to
ascertain completely the structure of the controllability region Q3. Let X°* denote the
set of points Z satisfying conditions (4, 9); if p, = n, then X"* = X, By X3* we
denote the subspage of space X", snanned by the vectors 'qs ortnogonal to the vectors
o= 1. ooy B — Pg), and by X2 we denote tte orthogonal complement of the sub-
space x, 1 * with respect to the space X" .Thus, the following theorem holds,

Theorem 4,1, The controllablhty region (} is a cylindrical set, i,e,, Qs =

=38 + Xz » where § X1 isa bounded set (the base of the cylinder), When

ps = n the dimension of the subspace X, ® equals the dimension of the fundamental
system of solutions of Eqs, (4. 3),

Zpk+(r2—r)

k=1

i,e., to the number of eigenvalues of matrix 4 with positive real parts, with due regard
to their multiplicities, and with zero real parts, without regard to their multiplicities,
On the boundary of set Qs there are points both belonging to region Q5 as well as not
belonging to it,

Under the condition p, = » we consider two special cases:

1. Al roots of Eq, (4.1) have negative real parts, In this case system (4, 3) coincides
with system (4, 8) which, for p, = n, has only a trivial solution, Consequently, the
quantity d, (T) — oo as 7 — oo for all 15 0, and hence, @} = X.

2, Al roots of Eq, (4,1), except A,, have negative real parts, The root A, is either
a zero root of arbitrary multiplicity Pi or is a real positive roots of multiplicity p, = 1.-
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In this case system (4, 3) consists of n — 1 linearly independent equations, Equations
(4. 3), (4.4) have only two solutions, differing from each other in signs q; and - 7):-
The region ¢; is the set of points # € X, bounded by two planes orthogonal to the vec~
tor n, and located at a distance dny from the origin, In the cases when ¢, = 0 or

& >0, but Ny and 1/P, are sufficiently small quantities, there are points belonging
toset @; on the bounding planes,

We now consider the question of the structure of region 1. The matrices 2x1 (I =
=0,1, ..., px — 1) contain px linearly independent columns {13, 14], while among the
columns of matrices wy (! == 1, ..., pxy — 1) there are no more than p, — 1 ones, There-
fore, the columns of ayb, =1, ..., pr—1;5==1, ..., 7) being linear combinations
of the columns of matrices @y (I=0.1, ..., px—1), contain no more than p, linearly in~
dependent, while the columns of ay;b, (I = 1,.. pr — 1; ¢ == 1, ..., r) contain no more
than py — 1 ones, Hence it follows that in the system obtained from (4, 3) for 5 =
=1, .., 7, there are no more than § linearly independent ones among the r§ equations,
Let p denote the rank of ttge system of 7» equations obtained from (4, 8) fors = 1,..r.
Then, among the vectorsfs (0 = 1, .y m—pyis=1, ..,r) , n — p vectors are linearly
independent, i,e., the set (1 belongs ton — p planes of the form (4. 9). Note that the
dimension of set @1 equals the rank of the mamix || Wy, ... W} [1, 15 whenp =
= n system (1,1) is completely controllable in Kalman's sense,
It is egsy to show that when p = nin system (4, 3) (s = 1, ...» 7) there are no less

than 2 Px linearly independent equations (recall that when p; = » we can assert

that there ‘are precisely 8 linearly independent equations in system (4, 3)). By X° we
denote the set of points  satisfying conditions (4, 9) for all s — 1, ..., r . By X}
we denote the subspace of space X°. spanned by the vectors 13: (s =1, ..., r) orthog-
onal to the vectors 1js (8 = 1, ..., n — psi =1, ..., 7, and by X5° we denote
the orthogonal complement of subspace X§ with respect to space X? , The following
theorem holds,

Theorem 4.2, The conmwollability region ¢ is a cylindrical set, i.e,, Q1 =
= § ++ X3,where § = X{ isa bounded set (the base of the cylinder), Whenp =
=n the dimension of subspace X%, equal to the dimension of the fundamental system
of solutions of Egs, (4.3) (3 = 1,... 7), is not less than

ry
Zpk +{rp—ry)
Ke=1

and not more than

Y
27,
=1

On the boundary of set ' there are points both belonging to region QU as well as not
belonging to it,

6. Structure of regions Q2 and Q2. , since Q(7) D Qi(T), the dista-
nce dy, (T) for the control class Q} (T') is not less than the corresponding distance for
class QX (7). In the preceding section we proved for class }(T) that G4{T) — oo
as T -~ oo, if v == 7,. Consequently, this fact holds also for the control class

Q% (T). From the right-hand inequality in (3,12) it follows that for 7| = 7, the
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distance @y (1) remains bounded as 7 — oo both for the class O} (T) as well as
for the class Q% (T).Thus, the very same theorems hold for the controllability regions

Q3 and Q? as do for the regions Q; and Q*. As follows from Theorem 4,1 and from
[2, 4], the structure of the controllability region Q"; (m = 1, Z) in the cases being
considered here coincides with the structure of the controllability region when the cont-
rol's linear momentum (1, 3) is bounded or when the control's magnitude (1, 2) and linear
momentum (1. 3) are bounded simultaneously,

The inference on the structure of the controllability region @3 could, of course, have

been made directly, by solving the problem of maximizing integral (3.1) in the control
class Q% (7). Here the control u,(f) € Q3 (T) maximizing integral (3, 3) has the form

o [|me 4, | —y), tEF (T, ¥, 00)=E,(T,%,0)

u‘(t, Xs5)={ 0, tEG,(T»X)

In the case analogous to Case 4 the equations determining the values %X° and ¢° acquire
the form

1 A 1
= | vt —pa=n, & J [1Me4%h, | — g dv = P,
ET. %, 0) E,(t, x.0)

In this case the distance d, (T) is determined by the formula

1 -
O N L N E il AP
E(T, %", 0)

6. Example, Consider the system of equations

2= 2y Ty = OnZy + GgsZy + bau, 2y = apTy + G397y + beu (6.1)

Equations (6, 1) describe the motion of a winged aircraft in a horizontal plane (2, and
z; are the heading and angle of side slip), The index s is dropped because there is
only one control in system (6,1), The characteristic equation of system (6,1) has one
zero root; let the other two roots be real, simple (therefore, we drop the index / also),
and negative, so that 4, = 0, A, < 0, A3 < 0. The matrix eA! has the form

1 °‘1 2y a;l.:)eht + agl' DMt lle®) agl,s) M agl-S)chl

At llo a;z.z) Mt +a(sa,=) eht agz.a) eMt a(:.:),w
0 a‘z"’) Mt +°‘(st) et a;’-’) eht +a§3'3) etot

where the coefficients ag-” are expressed in-a definite manner [2, 4] in terms of the
coefficients of mawix A. The expression ne 4!y is written in the form

ﬂe—Alb —_ 1.ha{].) + e—l.f (nlagl) + M;” + magB)) + e—lai (nlagl) + M’) + Mﬂ))
where
af? = bial® 4 beal!® (1 =1 for k=1; i=1,2,8 for k=2,3)

Equations (4, 3), (4, 4) have the form
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(
Mo + el 4 maf® =0 (k=2,3), nPoindimd=1 (6.2)

If system (6.1) is completely controllable, then Egs, (6.2) have only two solutions,
1° and — n°, and, moreover,

2) o3 _ g(® 3B .
where A, = Gg) «g *;" *27+ while A: and A, are obtained by a cyclic permutation

of the upper index in the coefficients i of the expression for A, A2 = A1® 4 A2® +
=+ As*. Thus, n°¢ ' b = A,alV/A == const. Therefore, for both ciasses ot admissible
controls we have

dgo = N [Aa{P | A-1

Consequently, the controllability regions Q™ (m = 1,2) are, just as in [2, 4], sets of
phase space points bounded by the two planes

Aiz1 + Aazs + Aszs = + NV

On these planes there are points belonging to the regions Q™ (m = 1,2).
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CONTACT PROBLEM FOR A SEMI-INFINITE CYLINDRICAL SHELL

PMM, Vol, 35, N5, 1971, pp. 831-839
E,I, GRIGOLIUK and V, M, TOLKACHEV
(Moscow)

(Received October 2, 1970)

The problem of the impression of pointed stamps along segments of the cross-
sectional circle of a semi-infinite cylindrical shell supported freely at the end~
face is considered, The edges of the stamps are absolutely stiff, -of constant
radius, and have no sharp angles, The influence of the shell endface on the
character of the change in reaction of the stamps is investigated, The problem
is solved on the basis of the shell theory equations constructed taking account of
the Kirchoff-Love hypothesis, The friction between the shell surface and the
stamp edges is not taken into account,

1, Let us consider a semi-infinite cylindrical shell (Fig, 1), freely supported on the
endface § = 0 compressed along segments of the circle § = t, by identical stamps,
where m denotes the number of stamps ((m = 2) in Fig, 1),

We consider the stamp edges to be sharp and absolutely stiff so that the contact be~
tween the shell and stamp is on the arc of a circle whose magnitude is characterized
by the central angle 0 to be determined, We consider the curvature 1/R; of the stamp
; edges to be constant, Linear stress result-

é ants g (reactions) act from the stamp on
the shell, and we consider them directed
l along the normal to the surface within the
shell, without taking account of friction,
Proceeding from the linear theory of thin

Ae, I shallow shells, we shall also assume that
either the angle 0 is small, or the radius
—¢ Q P R, of the stamp edges differs slightly from
1z the radius of the outer surface R of the
shell,

Fig. 1. We obtain the initial equation of the
problem from the condition of complete abutment of the shell to the stamp in the con-
tact zone, which can be written as %, = 1/R; — 1/ K, where %, is the bending str-
ain of the shell in the circumferential direction on the line of contact, Knowing the
Green's function ¥ for a semi-infinite shell freely supported on the endface § = 0
the strain %, can be determined by formulas from [1], Let us show that



